IJALISME

Walau Patah Sayap Rajawali Bertongkat Juga Aku ke Sini

Usia ideal menikah itu berapa?????

Bagi  anda yang sedang dan pernah mengalami masa kuliah di Panam, Limau manis, Bulaksumur, Seturan, Kemanggisan, Depok, Bandung, Surabaya dan komplek mahasiswa yang kenceng hawa hedonismenya tentu bisa merenungkan sebenarnya usia ideal untuk menikah itu berapa.

Pria 23 th, Begitu lulus, biar bisa ‘mengumbar’ janji dengan sang pacar
Perempuan 20th yang bertitel ST.MJ (Semester Tiga Mencari Jodoh), tahu kan fenomena mahasiswi yang semakin bimbang didetik-detik kelulusannya. Lebih baik segera ‘berikrar setia’ dengan abang alumni sudah lulus yang sekarang kerja di Chevron,Kondur, RAPP, IKPP! hidup tenang, orangtua senang

Pak Sedare : Mas Joe, teman baik saya punya banyak dongeng dalam periode ini.

Tapi begitu nyemplung di dunia kerja mungkin standarnya agak bergeser. Penyebabnya beragam, dari kenyataan hidup yang keras, ekspektasi orang tua dan lingkungan yang terlalu tinggi dan sebangsanya, akibatnya:
Pria 25 th (usia kelulusan + 3 tahun masa kerja)
Perempuan 23 th (usia kelulusan + 1 tahun masa kerja)

Kalau ternyata terpaksa bekerja di ibukota -dengan segala tuntutan duniawi yang sebenarnya tidak perlu- maka standarnya pun akan semakin bergeser
Pria 30th (entry level + 5 tahun)
Perempuan 29th: (entry level + 7 tahun)

Padahal, pun kalau pernikahan itu dibangun berdasarkan parameter duniawi seperti rumah, pesta pernikahan, tabungan, harusnya pasangan yang sudah bekerja 1-2 tahun itu sudah feasible untuk menikah, sudah mampu. Tapi emang bisa makan pake Cinta?

Posted in Juni 21st, 2007 — priandoyo

Juni 30, 2007 Posted by | Tidak Dikategorikan | 2 Komentar

Berapa gaji engineer itu? tips interview…. mau??

Salah satu pertanyaan yang kerap ditanyakan rekan-rekan pada saat akan interview, pindah pekerjaan ataupun mempertimbangkan antara menjadi karyawan atau wirausaha, adalah tentang gaji, berapakah kita akan dibayar untuk mengerjakan pekerjaan yang sangat membosankan itu. Menjawab pertanyaan ini kita perlu mempertimbangkan beberapa hal:

A. Standar Kompetensi
Pada negara berkembang (indonesia tepatnya) Engineer Telco menduduki kompetensi termahal dibandingkan rekan-rekannya di Informatics, Machnine (Manufacturing), Oil & Gas, Civil, atau Chemical. Hal ini didasari fakta bahwa:

1. Pass in grade elektro ITB, UI, UGM, STT, ITS dan bahkan univ. swasta termasuk paling tinggi dibandingkan bidang yang lain. Lebih khusus lagi elektro Telkom menduduki rangking top dibanding arus kuat, arus lemah dsb dkk.

2. Industri Telco di Indonesia sedang tumbuh pesat, bandingkan dengan era 70-an dimana Civil construction booming. Pertumbuhan ini juga didukung dengan working environment yang lebih nyaman dibandingkan pekerjaan di Oil Drilling, di proyek-proyek civil yang panas dan berdebu, atau dibandingkan project ditengah hutan dan laut. Umumnya pekerjaan Telco dilaksanakan diruang-ruang bising ber-AC ditengah2 pagi buta.

B. Standar Industri
Telkom Indonesia yang kapitalisasinya mencapai 150T dan next 2010 ditargetkan 300T, memberikan profit yang lebih besar dibandingkan Pertamina dan Bank Mandiri, para raksasa di kategorinya masing-masing. Indonesia diuntungkan jumlah user yang besar, barrier telco yang rendah, dll silahkan dianalisa sendiri, compare to others.

C. Standar tipe pekerjaan (vendor atau end user)
Vendor termasuk konsultan, auditor, lawyer, creative, etc professional third party seperti Siemens, Ericcson, Nokia, ZTE, Huawei memiliki tipe pekerjaan yang berbeda dibandingkan end user semacem XL, atau ISAT.

Vendor seringkali menggaji engineernya diatas end user mengingat waktu kerjanya yang lebih panjang, ready to call, standby dkk pressure lainnya. Vendor pada umumnya memiliki kesempatan belajar yang lebih besar dibandingkan end user. Dan vendor seringkali berstatus temporary employee, mengingat ketidak pastian project, kebijakan global (ex: Siemens)

Analisa Gaji:
Langsung aja berikut analisanya:
1. Major GSM player (TSEL, ISAT, EXCL)
a. Fresh Graduate Staff (>4 juta, total/month)
Experience Staff (4 juta x 10-20% each year increament)
b. Supervisor/Analist (for some company using specialist): Twice the staff, 8-12 juta
c. Manager/Specialist: twice the supervisor, 15-25 juta
Example: XL fresh: 4.5 juta (include bonus, facility)

2. Secondary player (BT, FREN, also new comer HTT, NTT)
Fresh Graduate (2> juta, total.month)
Example: Bakrie Telecom Fresh: 1.7 juta (exclude facility etc)

Tips Negoisasi Gaji:
1. Untuk fresh graduate, atau 1-2 tahun experience tapi blum proven. Lebih baik pasrah aja, company yang bagus dah ada standar gaji untuk fresh grad-nya. Bilang aja gaji ngikut standar sini.

2. Untuk experienced telco, tentukan standar anda berapa, misalnya masuk TSEL, dengan experienced anda 4 tahun misalnya, sangat wajar anda minta 8-12 juta untuk posisi tersebut.

3. Untuk experienced non telco, Anda bisa menggunakan rate yang sama seperti yang telco namun lakukan adjustment 20-30%. Biasanya non telco meng-expect gajinya terlalu rendah.

Kalau gaji dah ok terus?
Semisalnya gaji anda dah ok, ini tergantung standarnya gimana.
1. Ada yang menggunakan rumus universal, pindah itu kenaikannya minimal 200%, tapi ada juga gpp naiknya cuman 10% atau malah turun asal bisa di Telco Industry
2. Ada yang pengen di vendor biar bisa keluar negeri, ada yang pengen kantornya di Mega Kuningan biar deket rumah di tebet misalnya.
3. Ada yang menginginkan biar jadi field ops. di Sleman Jogjakarta misalnya, biar kata gaji kecil tapi kan di daerah. Bisa kaya raya nanti.

Kalau gaji anda sudah ok, baru tentukan plan 3-4 tahun kedepan mau seperti apa. Mau pindah lagi monggo, mau tetep disana sambil sikut sana sini untuk cari posisi ya monggo. Masukkan pertimbangan diatas untuk negoisasi lagi.

PS: Hitungan standar gaji ini menggunakan bulan, agak berbeda dibandingkan barat yang menggunakan annual incomen. Ini untuk memudahkan saja.

Referensi Tambahan:
Report Salary survey 2006
versi Kelly Services data diambil sebagian besar dari MNC, Kelly adalah consultant HR
versi HRD-club yahoogroups, mencangkup banyak local company
Saya kurang menyarankan menggunakan dua survey tersebut, karena deviasi yang besar, gaji antara company class A, B atau B+ tidak bisa diseragamkan.
Februari 22nd, 2007 — priandoyo

Juni 30, 2007 Posted by | Tidak Dikategorikan | 1 Komentar

Berapa gaji pejabat kita?

Presiden: Rp 62,7 juta/bulan
Wakil presiden: Rp 42,1 juta
Ketua KPK: Rp 36,0 juta
Ketua DPR: Rp 30,9 juta
ketua MA: Rp 24,3 juta
Pejabat tinggi: Rp 18,6 juta (Menteri, Jaksa Agung, Panglima TNI)

Masalahnya gaji gubernur BI, gaji dirut BUMN -bahkan BUMN setengah hati- pun bisa 200 juta/bulan. Dan Panglima TNI ataupun menteri hampir memiliki kekuasaan tidak terbatas di wilayahnya.

Jadi? meski digaji terbesar ketiga setelah presiden, tidak banyak yang tertarik jadi ketua KPK. Mungkin, kita memang tidak perlu KPK.

Referensi: Dicari pemberantas korupsi, gaji Rp36 juta per bulan
Bisnis Indonesia, 29 Juni 2007

Juni 30, 2007 Posted by | Tidak Dikategorikan | Tinggalkan komentar

Definition and Concept of Technology

Aditiawan Chandra and Zulkiflimansyah 

There is no universally accepted definition of the term that might serve as a natural point of departure. In a very narrow sense, technology is only technical information contained in patents or technical knowledge communicable in written form  [31]. Very often, technology refers to a class of knowledge about specific product or production technique and sometimes includes the technical skills necessary to use a product or a production technique  [16,68].

Technology thus is largely identified with the hardware of production or technical artifacts. Frances Stewart [101] provided probably the broadest definition of technology by including all skills, knowledge and procedures required for making, using and doing useful things. Technology in her definition therefore includes the software of production – managerial and marketing skills, and extended to services – administration, health, education and finance. Smillie  [95] describes this broader definition of technology as ” the science and art of getting things done through the application of skills and knowledge “.

In general,  the concept of technology implies a subtle mix of know-how, techniques and tools. Technology in this sense is vested in people – their knowledge, skills and routines – just as much as in the machine they use. Machines and tools are only the physical manifestation of a particular technology or technologies. Indeed, mere access to the physical elements of technology – even if accompanied by instructions for their use, and time to build up experience in using them – does not automatically lead to ‘mastery’ of that technology  [2] .

For mastering technology as stated by Clark [18], should not consist just of the establishment of new production facilities along with ancillary manuals, charts, schedules, diagrams and people – embodied know – how. It requires also the knowledge and expertise for implementing technical change. This in turn involves both the underlying ‘know – why’ of the technological system itself as well as the various technomanagerial capabilities needed to evaluate and transform existing plant to meet new and innovative operating conditions. Thus, technological mastery here implies the capability to use knowledge about physical processes underlying that technology in order to assimilate, adapt and / or create novel elements, in response to changing needs [22,70,83].

Technology in Economic Literature 

In the economic literature, the importance of technology has been known since the beginning of the discipline. Economists writing about economic growth for example have recognised technological advance as its key driving force  [72,93,96,]. The conclusion was that productivity growth depends very heavily on the introduction and efficient diffusion of new and improved processes and products in the economic system.

Although the contribution of technology is well recognised in the economic literature, for long it was treated as a ‘black box’ [86]. As a result, it is still common to find technology being equated simply with machines and devices, in isolation from the human resources and social contexts of their use, which give these tools their technological value. In this light, technology is defined in a static way.

Technology is a product, a package, that is produced by one set of firms or other institutions and consumed or used by another[2]. Using the neo-classical framework, technical change in industry has  conventionally been seen as involving two main activities. First, the development and initial commercialisation of significant innovations. Second, the progressively wider application of these innovations in a process that economists and others have described as ‘diffusion’.

The first of these activities is assumed to be heavily concentrated in the developed countries, becoming significant in developing economies only as they approach the international technology frontier – a pattern which is becoming evident in the recent data on international patenting by firms in the more industrialised developing countries such as  Korea and Taiwan.

Before this stage, developing countries are assumed to be involved in the international diffusion of technology, and since this is seen simply as involving the choice and adoption / acquisition of established technologies, creative innovation is assumed to be irrelevant.

From this perspective, “technological accumulation” in industrialising countries is seen as involving technology that is embodied in the stock of capital goods, together with the associated operating know-how and product specifications required to produce given products with given techniques at the relevant production efficiency frontier[9] .In the real world however, the evidence shows that the technology market does not function like a product market, and its ‘goods’ could not be transferred like physical products.

The reality indicates that most developing countries are rather inept in using industrial technologies. They are in other words, technically inefficient in using the imported technologies. As a result, many industrial technologies are used at lower levels of productivity in developing than in developed countries.

According to Lall [66,67] the technical inefficiency in developing countries can take several forms:

  1. The inability to find, choose and negotiate for the best imported technologies at the best prices, leading to high capital costs and low productive efficiency.
  2. The inability to master properly, in a static sense, the technologies that have been imported, i.e. technologies may be used below ‘best practice’ level of efficiency, needing too many inputs to produce a given level of output or producing output of inferior quality.
  3. Wide variations in efficiency levels among enterprises in the same industry. This implies that resources are being wasted by the enterprises that fall below the technological levels of the best firms.
  4. Lack of technological dynamism, of the ability to adapt or upgrade technologies to cope with changing circumstances at home or technological progress outside. T

Thus, because of this technical inefficiency, developing countries then may stay at the low value added end of the industrial spectrum, falling behind world technological frontiers as others forge ahead[67].

The neo-classical approach to technological development was challenged in the second half of the 1970s. The new approach has been rapidly developing, particularly since the early 1980s[1]Bell and Pavitt, for example, give a more realistic view of the nature of technology. According to them, understanding of technological change requires the distinction between innovators and adopters to be rejected[8,9]. The successful adoption of technology involves more than merely the purchase of machinery and the learning of operating procedures [22]. In part, this is because of the tacit nature of much technological knowledge: making it difficult or very costly to effectively communicate the full range of skills and knowledge required in executing complex tasks. This means that firms can not shift effortlessly along the production function [66], nor operate any particular technique immediately at optimal efficiency.

For firms in developing countries therefore, while technology ‘transfer’ may be necessary, it is not sufficient. The effective adoption and mastery of technology requires the acquisition of knowledge about a set of procedures, understanding of why procedures work and skill in putting them to use [2]. According to Bell and Pavitt[9] it also involves firm-level processes in which:

1.      The basic features of a technology are adapted to meet the idiosyncratic needs of a specific situationa

2.      A stream of further incremental modifications improve the technology and / or adapt it to changes in the inputs or products demanded by a competitive market.

Evidence from studies of large-scale industrial plants in many countries, indicates both phases of adaptation require complex and creative activities, and have the potential to generate significant improvements in production and economic gains [23,48]. This suggests that innovation should be understood not as a distinct precursor to technical change in production, but rather as part of an integral process which takes place within the environment of the innovating firm. It is among other things, the process which involves matching technological possibilities to market opportunities[37]. Furthermore, the incremental innovations – adaptations, modifications and enhancements to products and processes – which occur within firms may be just as economically important as major investments in new machines or changes in products that originate outside the firm [2,12]. 

The Technological Effort of Learning

The kind of improvements in industrial performance mentioned above, are often interpreted in most economic analysis as a natural consequence of doing production; the result of an automatic learning by doing process[5] .  This doing – based learning according to Bell[10] has three remarkable properties;

1.   It arises quite passively. Little or no explicit action is required to capture the increased knowledge / skill and whatever benefits flow from that acquisition.

2.      The learning process is virtually automatic. Given a period of ‘doing’ some quantum of learning will take place.

3.      It is costless. Learning is acquired simply as a free by – product from carrying on with production. No expenditure beyond that needed for production is required to generate the increased knowledge and skill.

This ‘something for nothing’ model of the learning process leads inevitably towards certain kinds of policy prescription. Increased ‘learning’ requires increased ‘doing’, and hence various forms of protection for doing are seen as appropriate means for enhancing learning – the benefits of the learning gained will offset the inevitable cost of protection. Beyond that, the role of policy intervention is limited.

Since experience accumulation is simply a function of time or of cumulated total output, questions about policy intervention designed to raise the rate of learning derived from a given stream of production activity are largely irrelevant[10].However, studies of infant industries in developing countries[7] demonstrate that learning does not occur spontaneously, and that performance can easily stagnate or decline over the long-run. Firms which do manage to master technology and initiate a process of incremental innovation, do so as a result of learning which is neither automatic nor effortless. Even minor innovation requires a spectrum of skills, knowledge and capacities for searching, selecting, assimilating and adapting techniques.

Developing and maintaining these capabilities requires both a conscious effort by firms and the investment of significant resources [2].  Thus, we can say that the acquisition of technological capability does not come merely from experience, though experience is important. It comes from conscious efforts – to monitor what is being done, to try new things, to keep track of developments throughout the world, to accumulate added skills, and to increase the ability to respond to new pressures and opportunities [24].

The need for such effort has been emphasised in virtually every article on the subject of capability building. The term has a certain intuitive appeal because it affirms that capability building is not a trivial activity; however, effort is a very broad term and does not tell us a great deal about what the learning process involves concretely [85].

An attempt to overcome this problem was made by Bell, who designed a useful classification of learning mechanisms based on the existing empirical evidence [10]. In addition to identifying experience – based learning by operating, he distinguished five mechanisms :

  • Learning by Doing / Operating
  • Learning by Changing
  • Learning by Evaluating (Learning from Performance Feedback)
  • Learning through Training
  • Learning by Hiring
  • Learning by Searching. 

Technological Capability

Technological capability was defined in the early 1980s as ‘ the ability to make effective use of technological knowledge.  It inheres not in the knowledge that is possessed but in the use of that knowledge and in the proficiency of its use in production, investment and innovation ‘ (Westphal, Kim and Dahlman, 1985:171).

This concept was interchangeable with other concepts that referred to the same idea, such as technological effort [22,65] or technological capacity [10,59]. Later on the concept of technological capabilities became more widely used.Although technological capability is a key issue for the firms in developing.

Capability acquisition is not easy, in part because the resources firms accumulate are diverse and difficult to categorise. They comprise both human capabilities: skills, experience and knowledge vested in people, along with institutional resources: the internal procedures, routines and organisational structures of the firm, and the external linkages cemented with other firms and institutions.

 An easy trap to fall into, is to associate ‘technology’ only with production activities, for example product design, manufacturing processes and the organisation of production. However, this ignores the importance of capital goods; in raw materials supply, and in distribution of products[2,66].

One common approach is to distinguish three general types of capabilities: production capabilities, investment capabilities and innovative capabilities [2,66,85].

Production capabilities involve those skills, knowledge and resources needed to use existing plant and processes efficiently to make established products. These capabilities enable firms to monitor raw materials inputs, schedule production, control output quality, maintain and replace machinery, and generally deal with day to day problems.

Investment capabilities involve those skills, knowledge and resources which enable firms to expand workshop facilities, procure and install standard equipment; as well as to search for, evaluate and select technology and its sources for new production projects. Finally and crucially,

Innovative and Adaptive capabilities consist of the skills, knowledge and resources which enable firms to assimilate, change and create technology via such activities as capital stretching, adapting processes and modifying products[2].However, to give these three categories equal status is to miss an important distinguishing dimension. Lall for example points out that the process of developing capabilities occurs gradually and cumulatively. In general, it leads from simple routine activities in which learning is based on experience, through more complex adaptive and duplicative activities requiring searching functions, to the most innovative activities based on more formalised research [66].
Bell and Pavitt [9] introduce a general distinction between basic production capacities and dynamic technological capabilities. This distinction applies across the full range of firm activities and adds a new dimension to the taxonomy of capabilities.

Production capacities are static attributes. Knowing a firm’s production capacities gives a ’snapshot’ of the firm’s ability to use existing production facilities, make standard investment decisions, expand established processes.

Technological capabilities on the other hand are dynamic resources, which encompasses the skills, knowledge and routines involved in generating and managing technical change, whether they concern production activities, investment activities or relations with other firms.


Bell and Pavitt call the learning process involved in building the underlying dynamic resources as ‘technological accumulation’ or ‘technological learning’ [9]. By using Bell and Pavitt conceptual model, it is easy to see how a firm with a fixed set of technological capabilities might generate a stream of improvements in production capacity over time. Such improvements may be important in enabling the firm to modify or scale-up production.

A firm with no technological capabilities at all, would be rigidly unable to adapt to any changes in its environment, and would not survive long. However, the fact that a firm has a limited set of technological capabilities, and uses these to gradually improve production capacity, may not always be adequate either. In the long run, such a firm may not be able to change radically enough to bridge the discontinuities that occasionally arise in technical change, and may be out-competed by those that can. If this conceptual model reflects reality, then a most important task facing firms in the long run is technological learning; the acquisition and strengthening of their technological capabilities [2]. 

Lessons of Technological Accumulation in PT Texmaco Perkasa Engineering

Technological accumulation at the microeconomic level is incremental and dynamic. It is not the result of an automatic learning by doing process. The technological learning tends to move along trajectories in which past learning contributes to particular directions of technical change and experience reinforces the existing stock of knowledge and expertise.

It is also shown that the accumulation of technological capability at the firm did not come merely from experience, though experience is important. It came from conscious efforts – to monitor what was being done, to try new things, to keep track of developments throughout the world, to accumulate added skills, and to increase the ability to respond to new pressures and opportunities. 

This article is a summary version of the author’s articles on “The Dynamic of Technological Accumulation at the Microeconomic Level : Lessons from Indonesia -A Case Study”  in  Asia Pasific Management Review, 2003 9 (6), pp 367-408

Juni 15, 2007 Posted by | Tidak Dikategorikan | Tinggalkan komentar

Beri Insinyur Wadah untuk Berinovasi

         Di industri engineering, nama Triharyo Soesilo atau yang akrab dipanggil ” Henki “, dikenal sebagai sosok revolusioner. Hal itu mulai terlihat ketika tahun 1981 dia memutuskan untuk mengambil gelar Master di Amerika dengan bidang ilmu process simulation, sebuah cara untuk merancang pabrik dengan menggunakan komputer. Padahal, saat itu komputer masih dianggap benda asing bagi masyarakat Indonesia, bahkan IBM Personal Computer (PC) saja baru diciptakan tahun itu. Namun, pria jebolan Teknik Kimia ITB ini yakin jika orang Indonesia bisa merancang pabrik menggunakan PC, pasti bisa murah dan efektif. Tiga tahun kemudian, Henki membawa software yang dibuatnya selama menimba ilmu di University of Arizona ke PT Rekayasa Industri, perusahaantempatnya merintis karir.

Kegigihannya dalam mengembangkan perusahaan, mendorong PT Rekayasa Industri untuk mempercayakan pembangunan pabrik pupuk Kaltim-3 di Bontang tahun 1988 ke tangan Henki, disusul proyek pabrik pupuk Sriwijaya 1B (Pusri-1B) tahun 1990. Proyek Pusri-1B sempat terancam gagal ketika perusahaan pupuk Urea di Bangladesh yang juga menggunakan lisensi proses yang sama dengan yang digunakan oleh Pusri -1B, meledak dengan puluhan orang meninggal di ruang pengendali. Namun, Henki berhasil meyakinkan Menteri Perindustrian Ir. Hartarto, bahwa proyek tersebut tidak perlu dibatalkan hanya fabrikasi peralatannya yang harus diperketat. Meski bekerja dibawah bayang-bayang keamanan, Henki berhasil memimpin pembangunan proyek Pusri-1B. Atas kerja kerasnya tersebut, Henki meraih PII engineering Award dari Dirjen Industri Kimia Dasar dan Badan Kejuruan Persatuan Insinyur Indonesia (BKK-PII) tahun 1994.

          Gembira sekaligus sedih, dirasakan oleh pria yang hobi nge-blog ini. Pasalnya, PT Rekayasa Industri sebagai pengembang proyek Pusri -1B mengalami bangkrut. Penyebabnya adalah biaya proyek Pusri-1B melebihi nilai kontrak yang telah ditetapkan. Akhirnya, perusahaan itu masuk kedalam perusahaan sakit di Departemen Perindustrian. Di tengah kondisi seperti itu, Henki memutuskan untuk melanjutkan S3 di AS. Namun, rupanya PT Rekayasa Industri belum siap ditinggalkannya, akhirnya dia memutuskan untuk tetap di perusahaan itu dan memperbaikinya. Selanjutnya, tahun 1995 Henki melakukan revolusi kegiatan engineering secara total dari mulai mengubah sistem SDM, penerapan ISO 9001 hingga penerapan teknologi informasi secara maksimal.

          Dalam penerapan teknologi informasi di PT Rekayasa Industri, Henki mengaku selalu mengadaptasi teknologi terbaru. Menurutnya, setiap perkembangan teknologi harus diikuti semaksimal mungkin. Jika tidak, maka orang lain yang akan memanfaatkannya dan kita kalah bersaing, katanya.

           Sukses menyelamatkan PT Rekayasa Industri, Henki menangani sejumlah proyek-proyek besar lainnya seperti proyek Optimisasi Kaltim (Popka), proyek Ammonia-Urea Pupuk Iskandar Muda (PIM-2) dan proyek Blue sky Balongan. Mulai tahun 2004, Henki menjabat sebagai Presiden Direktur PT Rekayasa Industri.

          Dalam salah satu blognya, Henki menyatakan bahwa setelah 25 tahun bekerja, ia baru menyadari bahwa keterpurukan bangsa ini disebabkan oleh insinyur-insinyur Indonesia yang kurang berkarya dan memberikan solusi kepada bangsanya.

Seperti apa harapannya terhadap insinyur muda Indonesia? simak wawancara singkat redaksi dengannya beberapa waktu lalu.

Banyak lulusan perguruan tinggi yang tidak siap pakai, entah dari sisi mental maupun kurikulumnya. Bagaimana jalan keluarnya menurut Anda ?

Ada dua paralel, satu insinyur inovasi, satu pengembangan korporasi wadah tempat insiyur berinovasi. Sebagai contoh, di PT Dirgantara Indonesia (PTDI), Pak Habibi itu tidak kurang berinovasi, tetapi disisi lain korporasinya tidak diurus. Coba lihat perusahaan lainnya, ada yang mengurus korporasinya, ada yang mengurus inovasinya. Di industri pupuk insinyur teknik kimia mendominasi, di industri kimia teknik kimia menguasai, di industri listrik insinyur elektro menguasai, insinyur sipil mendominasi di karya-karya. Tapi pernah nggak memperhatikan ada insinyur mesin yang menjadi direktur Honda atau Astra atau apa gitu? nggak ada! atau insinyur mesin menguasai manajemen Garuda atau perusahaan-perusahaan penerbangan ? Nggak ada insinyur mesin menguasai jabatan manajemen di kereta api. Akibatnya apa? kereta jatuh kereta anjlok. Industri mobil itu dibuat oleh Toyota untuk menjual produk mobil, akibatnya insinyur tidak diberi wadah untuk berinovasi karena ownernya sendiri tidak ingin mereka berinovasi.

Siapa yang harus menyiapkan wadah untuk insiyur berinovasi ?

Wadah yang menyiapkan ada beberapa. Pertama, existing industry yang sudah ada lebih bagus. Misalnya untuk mobil, jangan Astra lah, tapi existing industry yang dulu pernah dipikirkan misalnya Maleo dari BPPT. Kalau belum ada ya bikin. Tapi kalau seperti pembangkit listrik tenaga nuklir nggak bakal jadi-jadi lah, karena nggak ada korporasinya mau ada seribu orang tenaga ahli juga, kecuali kalau dibuat perusahaan atau pemerintah menugaskan PLN untuk membuat anak perusahaan nuklir. Wadah tersebut tidak harus swasta, industri juga bisa. Tapi industri biasanya suka melihat profit atau nggaknya.

Kadang-kadang nunggu pemerintah lama sedangkan industri juga melihat dulu profitabilitasnya. Bagaimana dengan entrepreneurship ?

Ada suatu model dimana insiyur-insinyur ITB berkumpul sekitar 60 orang menyimpan uang 5 juta perak, 10 juta perak kadang ada yang 50 juta perak, bikin pabrik biodesel, bikin teknologi Indonesia. Kita kembangkan terus agar orang bisa duplicated, bisa ditiru gitu. Sekarang itu kan banyak tuh yang insinyur-insinyur yang kerja di minyak-minyak, uangnya pasti milyaran kan. Tapi kalau kita tanya, anda ingin nggak punya pabrik kalau dengan 50 juta anda ? 100 juta orang naruh. Sebenarnya hal itu sudah ada dikepala banyak orang, cuma keberanian aja.

Bagaimana dengan peran Perguruan Tinggi ?

Mereka harus memberikan studi yang bagus, teknologi yang benar-benar bagus, jangan ngaco. Seperti teknologi yang dikembangkan oleh para insinyur ITB tersebut, ini yang terbaik. Dari sekian karya ITB hanya satu dari lab yang digunakan untuk industri. Ini model yang bisa didevelop Indonesia tanpa pemerintah atau swasta tapi dari kalangan profesi sendiri.

Apa kunci sukses menurut Anda ?

Dalam sebuah diskusi antara 60 orang insinyur ITB dalam sebuah blog, diketahui bahwa hampir semua pimpinan perusahaan yang mencapai jenjang pimpinan perusahaan sangat menyayangi anak dan istrinya atau suaminya. Jadi, familynya kuat. Kedua, semua yang lulus dari ITB dan mencapai jenjang tertinggi pasti memiliki obsesi.Obsesinya bukan untuk kerja dan cari uang karena yang seperti itu biasanya lompat-lompat. Ketiga, dalam memilih pekerjaan tidak asal pilih. Ada vision disitu.

Obsesi Anda sendiri apa ?

Cita-cita saya kalau tidak ada tugas dari negara, saya ingin sharing pengalaman saya ke teman-teman, mungkin menjadi pengajar. Banyak sekali yang harus diceritakan kepada para engineer agar tidak terjadi kesalahan yang sama. Sebagai contoh saja, tahun 1981 insitusi Indonesia sudah bikin pesawat terbang. Tahun 2007, pembangkit listrik tenaga uap semuanya dari Cina.

Juni 15, 2007 Posted by | Tidak Dikategorikan | 1 Komentar

youtube=http://www.youtube.com/watch?v=AgEmZ39EtFk

Juni 13, 2007 Posted by | tulisan | Tinggalkan komentar

Penat

penat dan lelah itulah yang telah dilakukan saban hari

Juni 13, 2007 Posted by | tulisan | Tinggalkan komentar